Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
2.
Nat Med ; 30(3): 670-674, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38321219

ABSTRACT

Dengue is a global epidemic causing over 100 million cases annually. The clinical symptoms range from mild fever to severe hemorrhage and shock, including some fatalities. The current paradigm is that these severe dengue cases occur mostly during secondary infections due to antibody-dependent enhancement after infection with a different dengue virus serotype. India has the highest dengue burden worldwide, but little is known about disease severity and its association with primary and secondary dengue infections. To address this issue, we examined 619 children with febrile dengue-confirmed infection from three hospitals in different regions of India. We classified primary and secondary infections based on IgM:IgG ratios using a dengue-specific enzyme-linked immunosorbent assay according to the World Health Organization guidelines. We found that primary dengue infections accounted for more than half of total clinical cases (344 of 619), severe dengue cases (112 of 202) and fatalities (5 of 7). Consistent with the classification based on binding antibody data, dengue neutralizing antibody titers were also significantly lower in primary infections compared to secondary infections (P ≤ 0.0001). Our findings question the currently widely held belief that severe dengue is associated predominantly with secondary infections and emphasizes the importance of developing vaccines or treatments to protect dengue-naive populations.


Subject(s)
Coinfection , Dengue Virus , Dengue , Severe Dengue , Humans , Child , Dengue/epidemiology , Severe Dengue/epidemiology , Antibodies, Viral , Coinfection/epidemiology , Fever
3.
JMIR Res Protoc ; 12: e48479, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37843912

ABSTRACT

BACKGROUND: COVID-19 is a recent major public health concern caused by the SARS-CoV-2 virus, with approximately 44.6 million COVID-19-positive cases and 530,000 deaths in India (as of February 1, 2023). The COVID-19 vaccination drive in India was initiated in January 2021; however, an effective preventive strategy with high efficacy and immunological safety remains elusive. OBJECTIVE: The aim of this study is to assess the immunogenic responses of Arsenicum album 30CH (AA30CH) as COVID-19 prophylaxis, including assessment of immunological markers, innate and acquired immune responses, COVID-19 symptoms, and its associated antibody responses. METHODS: This randomized controlled clinical trial (RCT) will include two parallel comparator groups of AA30CH and placebo with an allocation ratio of 1:1 conducted in the Pathanamthitta district of Kerala, India. The placebo or AA30CH will be administered in three intervention schedules and blood samples will be collected before and after each of the intervention schedules. Based on the inclusion and exclusion criteria, 112 participants per arm (with an expected dropout of 20%) will be screened. Immunogenic responses will be evaluated by determining the antigen density and modulation in immunological markers and lymphocyte subsets CD3, CD4, CD8, CD24, CD27, CD38, CD4 interferon-γ, CD4 CD17, CD4 CD25 (activated T lymphocytes), T cells, B cells, dendritic cells (mature and immature), and natural killer cells on days 1, 5, 23,27, 45, 49, and 66. The innate and acquired immune responses will also be evaluated by a real-time reverse-transcriptase polymerase chain reaction (RT-PCR) array profiler (84-gene set) before and after the study interventions. The toxicity status of AA30CH in study participants will be evaluated through hepatic, renal, and hematological parameters and peripheral smears on days 1, 5, 23, 27, 45, 49, and 66. The number of participants developing COVID-19-like symptoms per National Centre for Disease Control guidelines and the number of participants testing positive for COVID-19 in RT-PCR during follow-ups in any of the three intervention schedules will be identified. Moreover, a subgroup analysis will be used to assess the COVID-19 antibody responses between vaccinated and unvaccinated participants. RESULTS: This RCT protocol has been approved by various committees and funded by the Central Council for Research in Homoeopathy, Ministry of Ayush, Government of India. The project has been implemented in collaboration with the Department of Homoeopathy, Government of Kerala. The RCT was rolled out on January 25, 2023, and enrollment was completed April 3, 2023. The immunological assays will be conducted at the Department of Biotechnology-Translational Health Science and Technology Institute, Faridabad, India. CONCLUSIONS: This study will represent the first evaluation of the immunological efficacy and safety of AA30CH in an RCT, which may significantly impact the use of homeopathy as an evidence-based medicine approach. TRIAL REGISTRATION: Clinical Trials Registry-India CTRI/2022/08/045089; https://tinyurl.com/mryrpkvk. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/48479.

4.
Eur J Med Chem ; 256: 115416, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37159959

ABSTRACT

Dengue virus (DENV) infection is one of the most emerging arboviral infections in humans. DENV is a positive-stranded RNA virus in the Flaviviridae family consisting of an 11 kb genome. DENV non-structural protein 5 (DENV-NS5) constitutes the largest among the non-structural proteins, which act as two domains, the RNA-dependent RNA polymerase (RdRp) and RNA methyltransferase enzyme (MTase). The DENV-NS5 RdRp domain contributes to the viral replication stages, whereas the MTase initiates viral RNA capping and facilitates polyprotein translation. Given the functions of both DENV-NS5 domains have made them an important druggable target. Possible therapeutic interventions and drug discoveries against DENV infection were thoroughly reviewed; however, a current update on the therapeutic strategies specific to DENV-NS5 or its active domains was not attempted. Since most potential compounds and drugs targeting the DENV-NS5 were evaluated in both in vitro cultures and animal models, a more detailed evaluation of molecules/drug candidates still requires investigation in randomized controlled clinical trials. This review summarizes current perspectives on the therapeutic strategies adopted to target the DENV-NS5 (RdRp and MTase domains) at the host-pathogen interface and further discusses the directions to identify candidate drugs to combat DENV infection.


Subject(s)
Dengue Virus , Dengue , Animals , Humans , Dengue Virus/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , RNA-Dependent RNA Polymerase/metabolism , Methyltransferases/metabolism , Viral Nonstructural Proteins/metabolism , Dengue/drug therapy
5.
Saudi J Biol Sci ; 28(10): 5937-5946, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34588910

ABSTRACT

Curcuma comosa Roxb., family Zingiberaceae, exhibits diverse biological activities. This study was aimed to investigate the anti-inflammatory potential of a major phenolic diarylheptanoid isolated from C. comosa, ASPP 092 [(3S)-1-(3,4-dihydroxy-phenyl)-7-phenyl-(6E)-6-hepten-3-ol] in an experimentally-induced inflammatory ear edema model in mice. Ear edema in the mice was induced by the topical application of irritant, ethyl phenylpropiolate (EPP). The topical application of ASPP 092 at the edema site was directed immediately after the EPP application. The edematous responses were assessed at different time points by measuring the thickness of each ear before and after the EPP application followed by histopathology analysis. The expressions of major inflammatory cytokines were analyzed by real-time RT-PCR followed by the immunohistochemistry analysis of cyclooxygenase (COX-2). The topical application of ASPP 092 effectively suppressed the EPP-induced edematous formation in the ear of mice. Histopathological analysis showed substantial improvements in epidermal hyperplasia and inflammatory cell infiltration. ASPP 092 treatment also modulated the expressions of inflammatory cytokines including Tumor Necrosis Factor-α (TNF-α), interleukin-6 (IL-6), interleukin-10 (IL-10), interleukin-1ß (IL-1ß), and Matrix metalloproteinase-13 (MMP-13). The expressions of cyclooxygenases (COX) including COX-1 and COX-2 were significantly reduced by ASPP 092 treatment. For the first time, our results suggest the efficacy of ASPP 092 to suppress experimentally-induced inflammation in a preclinical model in mice; however, a more detailed evaluation of its mechanism of action is necessary before evaluating its efficacy and safety in randomized trials.

6.
Front Cell Infect Microbiol ; 11: 574067, 2021.
Article in English | MEDLINE | ID: mdl-33816326

ABSTRACT

Dengue is emerging as one of the most prevalent mosquito-borne viral diseases of humans. The 11kb RNA genome of the dengue virus encodes three structural proteins (envelope, pre-membrane, capsid) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5), all of which are translated as a single polyprotein that is subsequently cleaved by viral and host cellular proteases at specific sites. Non-structural protein 5 (NS5) is the largest of the non-structural proteins, functioning as both an RNA-dependent RNA polymerase (RdRp) that replicates the viral RNA and an RNA methyltransferase enzyme (MTase) that protects the viral genome by RNA capping, facilitating polyprotein translation. Within the human host, NS5 interacts with several proteins such as those in the JAK-STAT pathway, thereby interfering with anti-viral interferon signalling. This mini-review presents annotated, consolidated lists of known and potential NS5 interactors in the human host as determined by experimental and computational approaches respectively. The most significant protein interactors and the biological pathways they participate in are also highlighted and their implications discussed, along with the specific serotype of dengue virus as appropriate. This information can potentially stimulate and inform further research efforts towards providing an integrative understanding of the mechanisms by which NS5 manipulates the human-virus interface in general and the innate and adaptive immune responses in particular.


Subject(s)
Dengue Virus , Animals , Dengue Virus/genetics , Host-Pathogen Interactions , Humans , RNA, Viral , RNA-Dependent RNA Polymerase , Viral Nonstructural Proteins/genetics
7.
Viruses ; 12(8)2020 07 30.
Article in English | MEDLINE | ID: mdl-32751420

ABSTRACT

Dengue virus (DENV) infection is one of the most widespread mosquito-borne viral infections. Liver injury is commonly observed in severe DENV infection, and the present study aimed to examine the efficacy of crocetin treatment in an immunocompetent mouse model of DENV infection exhibiting liver injury. The efficacy of crocetin treatment in DENV-induced liver injury was assessed via both transaminase levels and histopathology analysis. A real-time polymerase chain reaction array was then used to describe the expression of 84 apoptosis-related genes. Using real-time RT-PCR and Western blot analysis, the gene expressions of host factors were investigated. Additionally, the effect of crocetin in NF-kB signaling during DENV infection was studied. We did not observe any significant reduction in virus production when DENV-infected mice were treated with crocetin. However, DENV-infected mice treated with crocetin showed reduced DENV-induced apoptosis. The real-time polymerase chain reaction array revealed pro-inflammatory cytokine expressions to be significantly reduced in the crocetin-treated DENV-infected mice. We also found that crocetin could effectively modulate antioxidant status in DENV-infected mice. Moreover, crocetin demonstrated the ability to reduce the nuclear translocation of NF-kB in DENV-infected mice. Our results suggest that crocetin treatment does not inhibit DENV replication in the liver of DENV-infected mice; however, we did find that crocetin improves host responses that reduce liver injury.


Subject(s)
Carotenoids/therapeutic use , Dengue Virus/pathogenicity , Dengue/drug therapy , Liver Diseases/drug therapy , Liver Diseases/virology , Virus Replication/drug effects , Vitamin A/analogs & derivatives , Active Transport, Cell Nucleus , Animals , Apoptosis/genetics , Dengue/complications , Dengue/physiopathology , Disease Models, Animal , Gene Expression , Liver/drug effects , Liver/pathology , Liver/virology , Male , Mice , Mice, Inbred BALB C , Transaminases/analysis , Vitamin A/therapeutic use
8.
Virus Genes ; 56(1): 27-36, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31720911

ABSTRACT

Dengue virus (DENV) requires clathrin-mediated endocytosis for its entry into the cells where the adaptor protein complex (AP) is vital for the clathrin-coated vesicle formation. The role of AP-2 was previously examined in the early stages of DENV infection; however, the role of AP-2 in the late stage of DENV infection was not determined. The µ1 subunit of AP-2 (AP2M1) is one of the most important cytoplasmic carrier domains in clathrin-mediated endocytosis and the phosphorylation of this subunit by the kinase enzyme, AP-2 associated protein kinase 1 (AAK1), stimulates clathrin and supports the cell surface receptor incorporation. In the present study, we primarily aimed to investigate the role of AP2M1 by gene silencing approach as well as using naked DENV RNA transfection into AP2M1 knockdown cells. Secondarily, an inhibitor of AAK1, sunitinib was used to investigate whether AAK1 could influence the virus production in DENV-infected Huh7 cells. The knockdown of AP2M1 in the DENV-infected Huh7 cells displayed a reduction in the viral titer at 24 h post-infection. Furthermore, experiments were conducted to bypass the DENV internalization using a naked DENV RNA transfection into the AP2M1 knockdown cells. Higher intracellular DENV RNA, DENV E protein, and intracellular virion were observed, whereas the extracellular virion production was comparably less than that of control. Treatment with sunitinib in DENV-infected Huh7 cells was able to reduce extracellular virion production and was consistent with all four serotypes of DENV. Therefore, our findings demonstrate the role of AP2M1 in the exocytosis step of DENV replication leading to infectious DENV production and the efficacy of sunitinib in suppressing virus production during the infection with different serotypes of DENV.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Dengue Virus/physiology , Dengue/virology , Virus Release , Adaptor Proteins, Vesicular Transport/genetics , Cell Line , Dengue/physiopathology , Dengue Virus/genetics , Endocytosis , Host-Pathogen Interactions , Humans , Virus Replication
9.
Antiviral Res ; 166: 42-55, 2019 06.
Article in English | MEDLINE | ID: mdl-30928439

ABSTRACT

Liver injury is one of the hallmark features of severe dengue virus (DENV) infection since DENV can replicate in the liver and induce hepatocytes to undergo apoptosis. N-acetyl cysteine (NAC), which is a clinically-used drug for treating acetaminophen toxicity, was found to benefit patients with DENV-induced liver injury; however, its mechanism of action remains unclear. Accordingly, our aim was to repurpose NAC in the preclinical studies to investigate its mechanism of action. Time of addition experiments in HepG2 cells elucidated effectiveness of NAC to reduce infectious virion at pre-, during- and post infection. In DENV-infected mice, NAC improved DENV-associated clinical manifestations, including leucopenia and thrombocytopenia, and reduced liver injury and hepatocyte apoptosis. Interestingly, we discovered that NAC significantly reduced DENV production in HepG2 cells and in liver of DENV-infected mice by induction of antiviral responses via interferon signaling. NAC treatment in DENV-infected mice helped to maintain antioxidant enzymes and redox balance in the liver. Therefore, NAC reduces DENV production and oxidative damage to ameliorate DENV-induced liver injury. Taken together, these findings suggest the novel therapeutic potential of NAC in DENV-induced liver injury and recommend evaluating its efficacy and safety in humans with DENV-induced liver injury.


Subject(s)
Acetylcysteine/pharmacology , Dengue Virus/drug effects , Dengue/drug therapy , Animals , Antiviral Agents/pharmacology , Disease Models, Animal , Drug Repositioning , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/pathology , Hepatocytes/virology , Humans , Interferons/drug effects , Interferons/metabolism , Liver/drug effects , Liver/pathology , Liver/virology , Mice , Oxidative Stress/drug effects , Virus Replication/drug effects
10.
Saudi Pharm J ; 27(1): 33-40, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30627050

ABSTRACT

Wound healing is the curative process of tissue injury, composed of three phases: the inflammatory phase, proliferative phase, followed by the maturation cum remodeling phase. Various treatment options were previously depicted for wound healing, however a treatment that accelerates these phases would be highly valuable. Platelet aggregation at the bleeding vessels and release of various growth factors are the most promising factors that stimulates the wound healing progress. In the present study, we hypothesized that the freeze-dried platelet which were normally discarded from the blood banks due to invalidity, might be promising to accelerate the phases of wound healing. The invalid freeze-dried platelets were prepared to a gel form called invalid freeze-dried platelet gel (IF-PG), which was tested for its efficacy in a cutaneous punch wound model in rats. Mupirocin antibiotic gel was used as a bio-equivalent formulation. The wound healing phases and changes in the wound sites were determined by assessing the wound sizes, histopathological analysis, immunohistochemical staining. The re-epithelialization at the wound sites at different time intervals till the wound closure was also determined. Our results suggest the beneficial effects of IF-PG; in reducing the wound area and accelerating wound closure in the cutaneous punch wound in rats. Histopathology and immunostaining results support the improvements in the wound when treated with IF-PG, which were similar to that of mupirocin antibiotic gel. Our preliminary findings also warrant the competency of IF-PG in modulating the different phases of wound healing process. In conclusion, IF-PG might be a resourceful alternative for the wound care management, however further studies are required to validate its impact on various growth factors before proceeding to clinical studies.

11.
Inflammopharmacology ; 27(1): 175-187, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30600472

ABSTRACT

Osteoarthritis (OA) causes articular cartilage destruction, initiating pain and inflammation in the joints, resulting in joint disability. Medications are available to manage these symptoms; however, their effects on the disease progression are limited. Loss of proteoglycans (PGs) was reported to contribute articular cartilage destruction in OA. Therapeutics approaches were previously studied in the animal models of OA. In the present study, we investigated the oral efficacy of four dosages of PGs (25 mg/kg, 50 mg/kg, 100 mg/kg and 200 mg/kg), isolated from the bramble shark cartilage, in an animal model of OA. Indomethacin was used as a bioequivalent formulation. Primarily, the mass spectrum analysis of the purified PGs obtained from bramble shark cartilage revealed the presence of two unique peptides including AGWLSDGSVR and LDGNPINLSK, that showed sequence similarity with aggrecan core-protein and epiphycan, respectively. The levels of C-reactive protein and uric acid in the OA rats were reduced when treated with PGs. Histopathology analysis displayed less cartilage erosion and neovascularization in OA rats treated with PGs. The X-ray imaging presented higher bone density with 200 mg/kg dosage of PG treatment in OA rats. The expressions of the inflammatory modulators including TNF-α, IL-1ß, MMP13, NOS2, IL-10 and COX-2 were found to be moderated with PG treatment. In addition, PG treatment maintained the activities of antioxidant enzymes, including SOD and catalase in the joint tissues with a higher GSH content, in a dose-dependent manner. Taken together, our preliminary findings report the anti-osteoarthritic properties of PGs and recommend to evaluate its efficacy and safety in randomized trials.


Subject(s)
Cartilage/chemistry , Cartilage/metabolism , Osteoarthritis/drug therapy , Proteoglycans/chemistry , Proteoglycans/pharmacology , Sharks/metabolism , Animals , Disease Models, Animal , Female , Inflammation/drug therapy , Inflammation/metabolism , Inflammation Mediators/metabolism , Osteoarthritis/metabolism , Pain/drug therapy , Pain/metabolism , Rats , Rats, Wistar
12.
Cell Signal ; 48: 64-68, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29753850

ABSTRACT

Dengue virus (DENV) infection is a disease that is endemic to many parts of the world, and its increasing prevalence ranks it among the diseases considered to be a significant threat to public health. The clinical manifestations of DENV infection range from mild dengue fever (DF) to more severe dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Increased proinflammatory cytokines and vascular permeability, both of which cause organ injury, are the hallmarks of severe dengue disease. Signs of liver injury were observed in studies using hepatic cell lines, mouse models, and autopsy specimens from DENV-infected patients, and these signs substantiated the effects of inflammatory responses and hepatic cell apoptosis. Mitogen-activated protein kinases (MAPK) are involved in inflammatory responses and cellular stress during viral infections. The roles of MAPK signaling in DENV infection were reviewed, and published data indicate MAPK signaling to be involved in inflammatory responses and hepatic cell apoptosis in both in vitro cultures and in vivo models. Modulation of MAPK signaling ameliorates the inflammatory responses and hepatic cell apoptosis in DENV infection. This accumulation of published data relative to the role of MAPK signaling in inflammatory responses and cell apoptosis in DENV infection is elucidatory, and may help to accelerate the development of novel or repositioned therapies to treat this unpredictable and often debilitating disease.


Subject(s)
Apoptosis , Hepatocytes/enzymology , Hepatocytes/pathology , Mitogen-Activated Protein Kinases/physiology , Severe Dengue/enzymology , Severe Dengue/pathology , Animals , Cell Line , Disease Models, Animal , Humans , Mice , Signal Transduction
13.
PLoS One ; 12(11): e0188121, 2017.
Article in English | MEDLINE | ID: mdl-29145490

ABSTRACT

Hepatic dysfunction is a feature of dengue virus (DENV) infection. Hepatic biopsy specimens obtained from fatal cases of DENV infection show apoptosis, which relates to the pathogenesis of DENV infection. However, how DENV induced liver injury is not fully understood. In this study, we aim to identify the factors that influence cell death by employing an apoptosis-related siRNA library screening. Our results show the effect of 558 gene silencing on caspase 3-mediated apoptosis in DENV-infected Huh7 cells. The majority of genes that contributed to apoptosis were the apoptosis-related kinase enzymes. Tumor necrosis factor superfamily member 12 (TNFSF12), and sphingosine kinase 2 (SPHK2), were selected as the candidate genes to further validate their influences on DENV-induced apoptosis. Transfection of siRNA targeting SPHK2 but not TNFSF12 genes reduced apoptosis determined by Annexin V/PI staining. Knockdown of SPHK2 did not reduce caspase 8 activity; however, did significantly reduce caspase 9 activity, suggesting its involvement of SPHK2 in the intrinsic pathway of apoptosis. Treatment of ABC294649, an inhibitor of SPHK2, reduced the caspase 3 activity, suggesting the involvement of its kinase activity in apoptosis. Knockdown of SPHK2 significantly reduced caspase 3 activity not only in DENV-infected Huh7 cells but also in DENV-infected HepG2 cells. Our results were consistent across all of the four serotypes of DENV infection, which supports the pro-apoptotic role of SPHK2 in DENV-infected liver cells.


Subject(s)
Apoptosis/physiology , Dengue Virus/physiology , Phosphotransferases (Alcohol Group Acceptor)/physiology , RNA Interference , Caspase 3/metabolism , Cell Line , Gene Knockdown Techniques , Humans , Liver/virology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Real-Time Polymerase Chain Reaction , Virus Replication
14.
Antiviral Res ; 141: 7-18, 2017 05.
Article in English | MEDLINE | ID: mdl-28188818

ABSTRACT

High viral load with liver injury is exhibited in severe dengue virus (DENV) infection. Mitogen activated protein kinases (MAPKs) including ERK1/2 and p38 MAPK were previously found to be involved in the animal models of DENV-induced liver injury. However, the role of JNK1/2 signaling in DENV-induced liver injury has never been investigated. JNK1/2 inhibitor, SP600125, was used to investigate the role of JNK1/2 signaling in the BALB/c mouse model of DENV-induced liver injury. SP600125-treated DENV-infected mice ameliorated leucopenia, thrombocytopenia, hemoconcentration, liver transaminases and liver histopathology. DENV-induced liver injury exhibited induced phosphorylation of JNK1/2, whereas SP600125 reduced this phosphorylation. An apoptotic real-time PCR array profiler was used to screen how SP600125 affects the expression of 84 cell death-associated genes to minimize DENV-induced liver injury. Modulation of caspase-3, caspase-8 and caspase-9 expressions by SP600125 in DENV-infected mice suggests its efficiency in restricting apoptosis via both extrinsic and intrinsic pathways. Reduced expressions of TNF-α and TRAIL are suggestive to modulate the extrinsic apoptotic signals, where reduced p53 phosphorylation and induced anti-apoptotic Bcl-2 expression indicate the involvement of the intrinsic apoptotic pathway. This study thus demonstrates the pivotal role of JNK1/2 signaling in DENV-induced liver injury and how SP600125 modulates this pathogenesis.


Subject(s)
Anthracenes/pharmacology , Liver/pathology , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinase 8/antagonists & inhibitors , Mitogen-Activated Protein Kinase 9/antagonists & inhibitors , Severe Dengue/metabolism , Severe Dengue/pathology , Animals , Anthracenes/administration & dosage , Anthracenes/therapeutic use , Apoptosis/drug effects , Caspases/drug effects , Dengue Virus/drug effects , Disease Models, Animal , Leukopenia/drug therapy , Liver/drug effects , Liver/virology , Mice , Mitogen-Activated Protein Kinase 8/metabolism , Mitogen-Activated Protein Kinase 9/metabolism , Phosphorylation/drug effects , Severe Dengue/drug therapy , Severe Dengue/virology , TNF-Related Apoptosis-Inducing Ligand/genetics , Tumor Necrosis Factor-alpha/genetics , Viral Load , p38 Mitogen-Activated Protein Kinases/metabolism
15.
Biochem Biophys Res Commun ; 478(1): 410-416, 2016 09 09.
Article in English | MEDLINE | ID: mdl-27396621

ABSTRACT

Dengue virus infection is one of the most common arthropod-borne viral diseases. A complex interplay between host and viral factors contributes to the severity of infection. The antiviral effects of three antibiotics, lomefloxacin, netilmicin, and minocycline, were examined in this study, and minocycline was found to be a promising drug. This antiviral effect was confirmed in all four serotypes of the virus. The effects of minocycline at various stages of the viral life cycle, such as during viral RNA synthesis, intracellular envelope protein expression, and the production of infectious virions, were examined and found to be significantly reduced by minocycline treatment. Minocycline also modulated host factors, including the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2). The transcription of antiviral genes, including 2'-5'-oligoadenylate synthetase 1 (OAS1), 2'-5'-oligoadenylate synthetase 3 (OAS3), and interferon α (IFNA), was upregulated by minocycline treatment. Therefore, the antiviral activity of minocycline may have a potential clinical use against Dengue virus infection.


Subject(s)
Dengue Virus/drug effects , Dengue/drug therapy , Dengue/virology , Drug Repositioning/methods , Minocycline/administration & dosage , Viral Load/drug effects , Antiviral Agents/administration & dosage , Dose-Response Relationship, Drug , Hep G2 Cells , Humans , Treatment Outcome , Viral Load/physiology
16.
PLoS One ; 11(2): e0149486, 2016.
Article in English | MEDLINE | ID: mdl-26901653

ABSTRACT

Dengue virus (DENV) infection causes organ injuries, and the liver is one of the most important sites of DENV infection, where viral replication generates a high viral load. The molecular mechanism of DENV-induced liver injury is still under investigation. The mitogen activated protein kinases (MAPKs), including p38 MAPK, have roles in the hepatic cell apoptosis induced by DENV. However, the in vivo role of p38 MAPK in DENV-induced liver injury is not fully understood. In this study, we investigated the role of SB203580, a p38 MAPK inhibitor, in a mouse model of DENV infection. Both the hematological parameters, leucopenia and thrombocytopenia, were improved by SB203580 treatment and liver transaminases and histopathology were also improved. We used a real-time PCR microarray to profile the expression of apoptosis-related genes. Tumor necrosis factor α, caspase 9, caspase 8, and caspase 3 proteins were significantly lower in the SB203580-treated DENV-infected mice than that in the infected control mice. Increased expressions of cytokines including TNF-α, IL-6 and IL-10, and chemokines including RANTES and IP-10 in DENV infection were reduced by SB203580 treatment. DENV infection induced the phosphorylation of p38MAPK, and its downstream signals including MAPKAPK2, HSP27 and ATF-2. SB203580 treatment did not decrease the phosphorylation of p38 MAPK, but it significantly reduced the phosphorylation of MAPKAPK2, HSP27, and ATF2. Therefore, SB203580 modulates the downstream signals to p38 MAPK and reduces DENV-induced liver injury.


Subject(s)
Activating Transcription Factor 2/metabolism , Dengue Virus/pathogenicity , HSP27 Heat-Shock Proteins/metabolism , Imidazoles/therapeutic use , Intracellular Signaling Peptides and Proteins/metabolism , Liver Diseases/drug therapy , MAP Kinase Signaling System/drug effects , Protein Serine-Threonine Kinases/metabolism , Pyridines/therapeutic use , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Liver/drug effects , Liver/injuries , Liver/virology , Liver Diseases/virology , Male , Mice , Mice, Inbred BALB C , Phosphorylation/drug effects
17.
Virus Res ; 188: 15-26, 2014 Aug 08.
Article in English | MEDLINE | ID: mdl-24704674

ABSTRACT

The liver is considered to be an important organ of dengue virus (DENV) replication and pathogenesis. However, molecular mechanisms of hepatic injury are still poorly understood. Modulation of Mitogen Activated Protein Kinases (MAPKs) was previously shown to affect DENV-induced apoptosis of hepatocytes in vitro. However, the in vivo role of ERK1/2, a member of the MAPK family, and the question whether its activation can facilitate cell survival or cell death, has not been thoroughly investigated. Therefore, the role of ERK1/2 in a mouse model of DENV infection was examined. Our results show that DENV induces phosphorylation of ERK1/2 and increases apoptosis. Inhibition of phosphorylated ERK1/2 by the selective ERK1/2 inhibitor, FR180204, limits hepatocyte apoptosis and reduces DENV-induced liver injury. Clinical parameters, including leucopenia, thrombocytopenia, transaminases and histology, show improvements after FR180204 treatment. The expression of cell death genes was further identified using real-time PCR array and Western blot analysis. Caspase-3 was significantly decreased in FR180204 treated DENV-infected mice compared to the levels of untreated DENV-infected mice suggesting the role of ERK1/2 signaling in immune-mediated liver injury during DENV infection.


Subject(s)
Dengue Virus/physiology , Dengue/complications , Liver Diseases/pathology , Liver Diseases/virology , MAP Kinase Signaling System , Animals , Apoptosis , Blotting, Western , Caspase 3/analysis , Disease Models, Animal , Male , Mice, Inbred BALB C , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...